3D Filament Defined

3D filaments are special types of plastics called thermoplastics. Once heated to the right temperature, thermoplastics become flexible. It’s this pliability that allows the printer to sculpt the filament to create your shapes before it cools down.


ABS is a great choice for printing plastic automotive parts, moving parts, musical instruments, kitchen appliances, electronic housings, and various toys, like LEGO. It has other applications too, aside from 3D printing. For example, traditional manufacturers use ABS to make plastic wrap, water bottles, and cups, to name a few uses. Despite its popularity for 3D printing, ABS is not the best filament for most home users. This is because it has a high melting point that needs to print on a heated surface, or bed. A heated printer bed is not something a lot of budget-range 3D printers come equipped with. Printing with ABS also produces unpleasant fumes that can irritate some people. Needless to say, good ventilation is essential. These things combined make ABS a material favored more by professionals than amateur users.

PRICE STARTING FROM: $20 for 1.75 mm, 1kg spool

ABS print temperature range: 210°C – 250°C (high)

ABS is popular for good reasons. It’s tough, and has impact-resistant properties. It’s this strength and moderate flexibility that makes it such a great choice for printing in 3D. It’s also easy to extrude from the printer’s nozzles, which makes it an easy material to work with.

The Pros

  • A durable, strong 3D filament
  • Quite flexible and lightweight
  • Cheapest thermoplastic available at the time of writing
  • Most favored material among professional 3D printers and keen armatures

The Cons

  • ABS is petroleum-based, making it a non-biodegradable material
  • Needs a high temperature to reach its melting point
  • Creates unpleasant fumes, most notable in poorly ventilated spaces


PRICE STARTING FROM: $20 for 1.75 mm, 1kg spool

PLA print temperature range: 180°C – 230°C (low)

PLA (Poly Lactic Acid) is popular for amateurs and professionals alike. It’s a special type of thermoplastic made from organic materials, namely cornstarch and sugarcane. The main benefits of PLA are that it’s safer and easier to use, and with no toxic fumes to worry about. Some users even find the sweet smell of the sugar-based filament pleasant. Compared to ABS, PLA produces 3D parts which are more aesthetically pleasing. This finish is thanks to its unique sheen and smooth appearance.

You might think it sounds like the perfect solution, but there are some drawbacks. For one, the melting point of PLA is much lower than ABS, and that makes it weaker. This matters if you’re printing moving parts or exposing the parts to high temperatures. Both of these things can result in the 3D objects, cracking, warping or even melting. If none of the above applies to you and your 3D projects, then PLA should be your filament of choice. It will award you with superior print details and is also less prone to printing errors during the build process.

The Pros

  • No harmful fumes, produces a sweet aroma when heated
  • Easier to work with compared to ABS (great material for beginners)
  • Compared to ABS, PLA is less prone to warping
  • Available in special effects like glow-in-the-dark colors and translucency

The Cons

  • Susceptible to clogging the printer nozzle
  • Can attract moisture that makes it potentially brittle and more difficult to print
  • Less sturdy overall than ABS


PRICE STARTING FROM: $24.99 for 1.75 mm, 1kg spool

PETG print temperature range: 210°C – 230°C

Today, PolyEthylene Terephthalate (PET) is a popular 3D material. Another common use for PET is in everyday plastic bottles. This plastic is both stable and harmless, emits no unpleasant or harmful odors, and is 100% recyclable. In its raw state, the filament has no color and is crystal clear. Once exposed to cold or heat the material quickly changes to a non-transparent state. A more advanced version if PET is a filament called PETG, also marketed as Amphora AM1800.


PETT is on a list of FDA approved polymers. This makes it completely ‘food safe’, meaning it’s safe for products like cups, and plates, etc. Needless to say, common applications for PETT filament include food containers and various kitchen utensils.

The Pros

  • Strong, flexible, and with biocompatibility
  • Does not warp
  • Does not shrink
  • Does not absorb moisture from the air
  • Does not degrade in water
  • FDA approved, food safe
  • Prices for PETT are falling

The Cons

  • Not an easy material for beginners to work with
  • Nozzle and printer bed temperatures needs fine-tuning for best results


PRICE STARTING FROM: $39.99 for 1.75 mm, 1kg spool

Nylon print temperature range: 210°C – 250°C (high)


Nylon filament is great to use in a whole variety of applications thanks to its strength, flexible properties, and durability. It’s particularly suited for various consumer products, tools, mechanical components, machine parts, structural parts, containers, and a much more.

Nylon filament, also called polyamide, is another popular choice. This is a synthetic polymer that’s stronger and more durable than ABS and PLA—and cost-effective. It’s also flexible, light, wear-resistant, and less brittle than both ABS and PLA. There are different kinds of nylon filament available, and what you choose will depend on which one suits your budget and needs. The difference between them is in the filament’s layer bonding abilities, tensile strength, and water absorption. You can also choose nylon filament that has a translucent or opaque finish and reduced shrinkage.

The Pros

  • Strong, durable and flexible
  • Less brittle than ABS and PLA
  • 100% thermoplastic material
  • Filament can be re-melted and used again without any loss of bonding

The Cons

  • Needs a high melting temperature
  • Breaks down and emits toxic fumes when heated
  • Absorbs moisture easily—proper storage is essential
  • Nylon print temperature range: 210°C – 250°C (high)

Flexible, TPE Filament

PRICE STARTING FROM: $31.99 for 1.75 mm, 1kg spool

TPE print temperature range: 225°C – 235°C

TPE 3D printer filament is easily the most flexible of all the printer materials. It is ‘super stretchy’ because of the thermoplastic elastomers, or TPE for short. It has such high elasticity properties that it feels like real rubber, easily springing back into shape like an elastic band. TPE is great to use with most FDM 3D printers. If you need to fabricate stretchable 3D parts that can endure more punishment than any regular ABS or PLA, this is your material.


There are wide ranging applications and industries which benefit from TPE filament. We can see it used in household appliances and the automotive sector. It’s also a popular for kid’s toys, wearables, and smartphone cases, etc. For commercial use, TPE is found in medical supplies, weather seals for windows and doors, electrical insulation, and the soles of footwear, to name a few.

The Pros

  • High elasticity properties and exceptional abrasion-resistance
  • Smooth consistent diameter
  • Bonds well between layers (vital for high-quality)objects)
  • Durable material with little shrinkage during the cooling process
  • No heated bed needed

The Cons

  • 3D printing with TPE is difficult for the inexperienced
  • Print nozzle needs fine-tuning for optimal performance
  • Can extrude from nozzle inconsistently

thanks to 3dinsider for the info